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Supplementary Information
 
The Supplementary Information derives Eq. (1) in the main text and proves that the extrinsic term indeed can be interpreted
as the normalised covariance between two identical and independent systems embedded in the same environment. It also
briefly discusses transcription noise, plasmid extinctions and how well GFP reports plasmid copy numbers.

Deriving Eq. (1)
Process and method When the birth and death process behind Eq. (1) in the main text is in state {n1, n2}, the possible
transitions are
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where 
_

1R  and 1R+  depend on n1, and 
_
2R  and 2R+  depend on both n1 and n2. The corresponding Markov process is

governed by master equation
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where pn1n2 is the joint probability of n1 and n2. When R1 or R2 is nonlinear in n1 or n2, Eq. (S2) must be approximated
numerically or by expansion methods. A systematic analytical approach is to use van Kampen’s Ω-expansion1

,2

−3 that
formulates all rates in terms of the system volume Ω such that discrete events give relatively small jumps when Ω is large.
The lowest order expansion reproduces the macroscopic rate equations
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where xio=oni/Ω and rio=oRi/Ω  in the limit Ω→∞. Upper-case X thus refers to the molecular species, lower-case x to
macroscopic concentrations, and the integer n to the number of molecules. The next order terms reproduce a version of the
fluctuation-dissipation theorem (FDT), where stationary fluctuations follow

0TA A Bσ σ+ + Ω = , (S4)
where σ is the sought covariance matrix, A is the Jacobian of the macroscopic system and ΩB is a diffusion matrix
depending on system size, stoichiometry and macroscopic reaction rates, all evaluated at steady state (see e.g. chapter 1.8 in
Keizer's Statistical Thermodynamics of Nonequilibrium Processes3 for an introduction, or Eqs. 3.46 and 6.115 in Risken’s
The Fokker-Planck Equation4). The reasons to invoke the Ω-expansion as a motivation for Eq. (S4) are that it provides a
conceptually sound derivation, and that it ensures that A and ΩB in Eq. (S4) are defined macroscopically. The mesoscopic
rates R1 and R2 should thus first be formulated in terms of Ω, so that the macroscopic rates r1 and r2 can be explicitly
calculated, and then used to calculate Hijo=o∂ln(ri

−
o/ri

+)o/∂ln(xj) and other parameters. The examples of the main text should thus
have referred to the macroscopic rates r rather than the mesoscopic R, which is why they do not explicitly include Ω. This
informal use is motivated by the reduced notation, but the full notations (both mesoscopic rate equations and macroscopic
master equations) should be used wherever space limitations allow.

Throughout the analysis, all parameters are evaluated at steady state. Many reactions are also assumed to be elementary
complex3 so that rapid transitions between states can be compounded into effective rates.
More intuitive parameters My strategy here is to rewrite A and ΩB in terms of averages of numbers of molecules,
lifetimes and logarithmic gains. This is done purely by interpretations, never by restrictions or ad hoc assumptions. The
Jacobian A can be written as
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Parameter Hij summarizes, in a scale-free way, how a change in xj affects the balance between synthesis and degradation of
xi (see main text).

In nonlinear systems, the average number of molecules can be arbitrarily displaced from the point where the birth and
death rates balance each other. However, within the approximation of Eq. (S4), it is definitionally true that i in x= Ω . It
may appear strange to use i in x= Ω  in the definition of the process but i in x= Ω  in the interpretation of the result. But by
the nature of the approach, A and ΩB are defined macroscopically where ni displays zero relative deviations from in .

The average lifetime can in turn be defined by the concentration divided by the total rate of formation or elimination,
i i ix rτ = . For exponential decay, i i ir d x− =  this trivially gives 1i idτ = , but for nonlinear elimination mechanisms, average

lifetimes depend on concentrations. If the concentrations change due to fluctuations or adjustments, it is difficult to
calculate the real average lifetimes since the rate of degradation changes. However, that is not a problem here as A and ΩB
are evaluated at an asymptotically stable macroscopic steady state where all i ix r  are constant. Each molecule is then
surrounded by a constant environment of other molecules, and the lifetime definitions are both exact and universal,
resulting in

          i i ìr n τΩ = . (S6)
Even if the main text only considers examples with exponential decay, Eq. (1) is thus more general than that, and Eq. (S5)
can always be rewritten as
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where angular brackets denote averages. For the particular process considered here, the diffusion matrix B similarly
follows4

  2 2ii i i iB r n τΩ = Ω =    and    0ijBΩ =  for i≠j (S8)
where the 2:s reflect that births and deaths add and eliminate one molecule each, and the 0:s reflect that n1 and n2 are
produced and consumed in separate reactions.
Solving the equation system. To facilitate calculations and interpretations I introduce the normalized matrices
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This changes Eq. (S4) to
         ( ) 0TMV MV D+ + = . (S10)

which could be further divided into separate matrices containing averages of numbers of molecules, logarithmic factors,
lifetimes and stoichiometric factors. Eqs. (S1)-(S3) give

        

11

1

21 22

2 2

0H

M
H H
τ

τ τ

 
 
 = −
 
 
 

       and  1 1

2 2

2 0

20

n
D

n

τ

τ

 
 

=  
 
  

. (S11)

The only thing left is to solve the corresponding Eq. (S10) for V using standard methods for linear equation systems. When
the dust has settled, this gives
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as in Eq. (1). The reason for formulating the solution in these terms can be understood by looking at the different limits
where: n2 deterministically follows n1; n1 does not fluctuate; n1 stays at fixed random values; 2n  is proportional to 1n ;
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and n1 fluctuates very rapidly. Each limit eliminates entire terms or factors. Numbers n1 and n2 are negatively correlated
when H21 is positive since an increase in n1 then causes an average decrease in n2. Autocorrelations follow directly from
Onsager's regression hypothesis4, involving the exponential of the Jacobian.

Covariances in the Two-gene Study
The second result that remains to be proven is that the extrinsic noise term in Eq. (1) can be interpreted as the normalized
covariance between two identical and independent systems X2 and X3 in the same environment X1. The theoretical study5

that motivated the two-gene experimental strategy6 used a general argument based on an integral over all intrinsic and
extrinsic variables in the system. However, that formulation implicitly assumes that the intrinsic and extrinsic variables stay
at fixed random values, i.e., they were not defined by random processes but by static associations between variables. It does
not cover the present scenario where n1 and n2 change randomly over time. Here I show that the experimental strategy is
indeed supported by the model above. This requires an extension to three dimensions, with Hij=0 for ij = [12, 32, 13, 23].
The zeros in the Jacobian reflect the assumption of disorder and independence, while the assumption of equivalence adds
the simplifications M21 = M31, M22 = M33 and D22 = D33. The statement we wish to prove is that the normalized covariance
between n2 and n3 equals the extrinsic noise of either one
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As seen by comparing Eq. (S13) with the second term of Eq. (S14), and using the fact that components X2 and X3 have
identical statistical properties, this is equivalent to

       21
23 12

22

HV V
H

= − . (S16)

To prove it we have to solve the corresponding Eq. (S10) using the assumptions of equivalence and independence.
However, since we are only interested in the relation between V12 and V23 we do not have to solve the entire system, only
the equation defined by the 2nd rows and 3rd columns of the matrices in Eq. (S10). This directly proves Eq. (S16)
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Because the underlying master equations are allowed to be nonlinear, it is tempting to think that this sanctifies the
covariance strategy in experimental nonlinear systems. That is not the case. The approach above ad hoc assumes
independence to establish first principles, but nonlinear systems rarely fulfil this criterion. Nonlinearities do not necessarily
imply feedback loops or other forms of direct regulation. If the GFP molecules compete for proteases or if their transcripts
compete for RNases, the degradation reactions become dependent and the method breaks down. Correlations may still say
something useful, but the covariance will not coincide with the noise that comes from fluctuations in extrinsic factors.
Fortunately, this will be evident in experiments, and was checked in the original study6.

Autorepression, plasmid extinctions and transcription noise
Autorepression Adding negative feedback would typically decrease the average number of molecules and thereby increase
intrinsic noise. This is an important issue in synthetic networks, but when analysing design principles of natural systems, it
is often more convenient to compare them at the same average, i.e., assume that nature has provided compensatory
mutations to restore the average8. The negative feedback loops in the experimental studies were artificially introduced or
removed, but the averages are still not an issue. In the transcription study, the noise was unaffected by any changes in gene
expression rates (including compensatory mutations), proving that these processes do not contribute substantial noise (see
main text). The replication study did not look at one and the same system with and without negative feedback, but instead
analysed a large number of natural plasmids and one unrelated synthetic plasmid where negative feedback was impaired.
The average copy number of the synthetic plasmid was intermediate but relative fluctuations were still much higher.

There are also known exceptions from points (1)-(3) in section Noise in the central dogma of the main text, where
autorepression increases rather than decreases the noise by introducing time-delays, noisy signalling or increasing the
susceptibility to extrinsic changes. For instance, if the repression probability ( )2K K n+  comes from binding and
dissociating to DNA, the present stochastic treatment assumes rapid equilibration between bound and free DNA. If the
equilibration instead is slow, the inherent switching stochasticity can introduce a large noise (see below). This problem is
probably not significant in the experiments as expression was averaged over many plasmid copies7, but the same
autorepression of chromosomal gene expression may behave differently.
Plasmid extinctions Because self-replicators (e.g. plasmids) by definition are templates for their own synthesis, extinction
eventually absorbs all probability mass. However, to approximate the distribution in cells where the process has not yet
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gone to extinction, one can artificially introduce a small but nonzero escape rate, or obtain an exact equation by
conditioning the process on not yet being extinct. For Markov processes, conditioning is done by simply re-routing the
probability mass that enters the absorbing state to all other states proportionally. The approximations presented here only
take into account how the system responds close to its average, and will thus approximate the distribution in plasmid-
containing cells regardless, but extinctions and conditioning can be dealt with more explicitly8,9.
Transcription noise In all the experimental systems, transcription was modified by changing the concentration of an
inducer that targets a repressor (or sometimes an activator). This simultaneously affects many potential noise parameters:
the fluctuations in the inducer concentration, the time-constant for de-activating the repressor, the repressor fluctuations, the
time constant and average occupancy of the gene, the average transcription rate, and the average translation rate. Many of
these changes could produce a decreasing protein noise with increasing inducer concentration, as observed in most
experiments (see main text). The mRNA-protein model in section Transcription and translation noise in B. subtilis
provides one example, but at least two other scenarios have been considered in the literature: noise from randomly turning
on and off genes10, and decreasing susceptibility to repressor noise5.

The simplest gene model is the random telegraph process
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µ
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For a single gene, the number of active genes n1 then fluctuates between zero and one, and
2
1

1 2
11

and
1     1n
nn

µ σ
µ λ

= = −
+

, (S19)

where stationary n1-fluctuations are Bernoulli distributed (as the outcome of flipping a biased coin). If proteins (X2) are
synthesised at a constant intensity when the gene is on and are eliminated through exponential decay, then
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similarly to Eq. (1) in the main text. By varying the repressor concentration, the experiments vary λ in Eq. (S18). Because
the average protein level in this model is proportional to the average number of active genes, 2 1n A n=  where A is a
constant, and because the experiments measure n2, it is convenient to rewrite Eqs. (S19) and (S20) as
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Because the protein level additionally was so high that the first term in Eq. (S20) is negligible, protein noise follows an
observational

2
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where B is a constant that depends on A, µ and τ2, but not on λ that is varied in the experiments. Depending on parameters,
this can provide an almost constant background noise that is independent of transcription, but can also be almost inversely
proportional to transcription rate for certain parameters. It is thus possible that the ‘mRNA’ noise in the experimental
interpretations in fact is a ‘gene’ noise, and the main support for the mRNA interpretation of the one-gene B. subtilis
experiments11 is that the gene model above only is consistent with the experimental results for particular parameter values,
while the mRNA model needs no parameter fitting.

If the genes switch on and off independently of inducer, for example due to spontaneous conformational changes in the
DNA, this could provide a constant source of noise that is independent of the repressor concentration. This may explain
why the intrinsic noise in the two-gene E. coli study6 (where the ‘intrinsic’ category would include gene noise) did not
approach zero at high transcription rates, but rather fit 22

2 2 1 2 2n c c nσ = +  with 2
1 10c −≈  and 2 20 0.3c n≤ ≤ , and

thus 2 2 10%nσ ≥ . However, this observation could also be explained by the fact that the two GFPs were not perfectly
identical, so that some extrinsic noise may be sorted as intrinsic.

If the protein fluctuations instead come from fluctuations in the repressor concentration, one must take into account that
the susceptibility to repressor fluctuations changes with the average induction. For instance, assume that the corresponding
rate equation is
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where x1 and x2 are repressor and protein concentrations respectively. If all other things remain constant, the steady state
concentration and susceptibility to repressor then follow
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where constant A depends on d2, k2 and Ω. Using this in Eq. (1) thus again produces an observational decrease in 22
2 2nσ

with 2n , though not an inverse proportionality throughout the induction range.

A non-monotonic 22
2 2nσ  could also come about in many ways. In the two-gene E. coli study6 it was explained5 by

the lower susceptibility at higher induction (as in Eq. (S24)), that gradually becomes overshadowed by an increase in
relative LacI fluctuations at lower LacI averages. But a lower average LacI would only have this effect if LacI fluctuations
really come from having few LacI molecules per cell, not if LacI fluctuations come from fluctuations in mRNAs, plasmids
or other factors that enslave LacI. An increase in relative LacI fluctuations may instead come from IPTG fluctuations, or, if
dissociation of the LacI-IPTG complex is slow compared to its degradation and dilution rates, from the shorter effective
LacI lifetime. If LacI transmits extrinsic noise from e.g. plasmids to GFP, a shorter lifetime reduces the total time-averaging
in the cascade (Eq. (1)) and can reproduce the observed effect. However, it should be stressed that there is nothing plasmid-
specific about this explanation and therefore no reason not to compare total noise in the two-gene E. coli study6 with the
total noise in the one-gene S. cerevisiae study12, that instead attributed the non-monotonicity to transcriptional re-initiation.

Non-monotonicity also follows naturally from leaky gene expression. If a gene is expressed at a certain rate when a
molecule X is bound, and at another rate when it is not bound, then gene expression will be constitutive at both low and
high X. At intermediate X, however, the gene displays spontaneous fluctuations in activity, and additionally transmits
fluctuations from X, typically producing non-monotonous susceptibilities. Both scenarios should be common in prokaryotes
and eukaryotes alike, so non-monotonous noise curves can never be used to infer organismic differences, unless the
experiments are carried out systematically for large numbers of genes.

Plasmid-dependent or independent fluctuations?
The plasmid-based experiments disagree on whether the noise comes from plasmids or other random cell processes. One
possibility is that natural plasmids display e.g. 20% fluctuations, that the synthetic construct with impaired replication
control displays e.g. 100%, and that the environment adds an intermediate 40%. If the normalised variances add, total noise
would then be 2 20.2 0.4 44%+ =  and 2 21 0.4 108%+ =  respectively. GFP would then faithfully report fluctuations for the
synthetic construct, but not for natural plasmids. The experimental controls give some further indications of where the noise
comes from.

 One indication of plasmid-independent noise is that all six natural plasmids examined in the replication study
showed relative standard deviations in the range of 43% to 55%. Since the plasmids are unrelated, with different averages,
control mechanisms and partitioning of copies at the end of the cell cycle, such similarities are surprising. However, it could
be partly explained by the fact that low-copy plasmids compensate with tighter replication control and more precise
partitioning at cell division, or that plasmids are subject to substantial extrinsic noise so that averages become irrelevant.
Some of the similarity can also be explained by the fact that measurements were made over unsynchronised populations of
cells, where dividing cells on average contain twice as many plasmid copies as new-born cells. If such systematic variation
adds an extrinsic component, as naively expected for plasmids that regulate their concentration, then
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With C as the relative standard deviation in volume, the replication study indicated C = 21%, as expected theoretically13 for
unsynchronised cultures in idealised exponential growth, but the method used is expected to underestimate volume
variation. If C =30%, the standard deviations for synchronised cells would range from 31% to 46% rather than from 43% to
55%. The transcription study7 removed this source of variation by looking at the fluorescence per unit area of the cell
profile, but two cloning vectors with a 20-fold difference in copy numbers still showed no significant differences in the
noise levels.

If the plasmid measurement worked perfectly, cells with one plasmid copy would have half the fluorescence of cells
with two plasmid copies. Since no cells have e.g. 1½ copies, these subpopulations should be clearly separable, at least for
low-copy plasmids with averages of <o5 per cell. But the observed fluorescence distributions were smooth and unimodal,
without peaks at discrete copy numbers. This may indicate that the variation does not reflect gene dosage, at least not very
accurately. However, the same method applied to chromosomes showed quite clear peaks. The difference could reflect
time-averaging. For both plasmids and chromosomes, gfp was pulse-induced for 25% of a cell cycle, and the cells were
fixed to let all the GFP molecules mature before measuring fluorescence. Thus the GFP level should depend on the recent
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history of plasmid copy numbers – ideally the current number – rather than an average over the last couple of generations.
However, the efficiency of time-averaging also depends on the mechanisms of replication control. Chromosomes replicate
in synchrony, thus spending longer times at a certain copy number and giving the GFP level more time to adjust, while most
bacterial plasmids do not replicate in synchrony. Pulse-inducing GFP synthesis for 25% of the cell cycle may thus be too
long for plasmids, but shorter times create new problems: 1) fluctuations from having few mRNA transcripts start to
contribute; 2) random association or dissociation of transcriptional activators or repressors significantly randomise the
effective induction time; 3) other extrinsic fluctuations also become less time-averaged; and 4) the average GFP level was
not proportional to induction time – the controls instead show a large constant term that will contribute more at short
induction.

Supporting the interpretation that plasmid-encoded GFP reports plasmid copy numbers, some candidates for plasmid-
independent noise can be ruled out. If the noise came from the probabilistic events in gene expression, high copy plasmids
would display much smaller relative standard deviation since gene expression then would be averaged over more copies.
That the relative standard deviation was unaffected by the average numbers of genes, mRNAs and proteins thus proves that
the noise comes from other cell factors, like plasmids, RNA polymerase, ribosomes, proteases etc. The chromosomal
studies of constitutive gene expression also showed low noise levels in spite of the lower number of genes. Finally, the
extrinsic noise in the two-gene study was large when the transcriptional repressor was plasmid-coded. All these results
indicate that much of the noise comes from plasmids, but more direct measurements are necessary.

In conclusion, GFP could both exaggerate and underestimate plasmid fluctuations, but there are certainly indications
that plasmids fluctuate substantially. The plasmid replication study estimated that the GFP method was good enough to
separate two-fold differences in copy numbers, which is consistent with the other studies.
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